人と熱との関わりの足跡(その5) -我が国の空気調和の父 柳町政之助の偉業-

Footprints of the relationship between humans and heat (Part 5) -Great Achievements by Masanosuke Yanagimachi, Father of Air Conditioning System in Japan-

> 高橋 惇(元高砂熱学工業株式会社) Atsushi TAKAHASHI (Formerly, Takasago Thermal Engineering Co., Ltd.) e-mail: airport3@jcom.home.ne.jp

1. はじめに

高砂暖房株式会社(現高砂熱学工業株式会社)と 株式会社荏原製作所は,1930年5月に共同して国 産第一号となる高砂荏原式電動遠心式冷凍機(以降, 高砂荏原式ターボ冷凍機と略す)の試作機を完成さ せた[1,2]. この高砂荏原式ターボ冷凍機は,百貨 店・劇場・紡績工場等の空気調和設備に採用され, 1931年から1941年までの納入実績は104台,合計 18,500日本冷凍トン(以降JRTと略し,説明は文末 に記する)と記録されている.

図1 現存する最古の高砂荏原式ターボ冷凍機 (高砂熱学工業 技術研究所 所蔵)

現存する最古の高砂荏原式ターボ冷凍機 130JRT は、1937年に製造され六桜社(現 コニカミノルタ 株式会社)の日野分工場に納入され、約30年間使 用された後、1974年2月に撤去・保存されたもの で、我が国の空気調和の発展に寄与した歴史的な機 械類として、現在、神奈川県厚木市にある高砂熱学 工業の技術研究所の玄関脇に展示・保管されている (図1). なおこの高砂荏原式ターボ冷凍機は,2010 年8月7日の機械の日に,一般社団法人日本機械学 会から機械遺産 No.42 に認定された[3].

本報では、開発当初の技術資料類[1,2]に基づき, 高砂荏原式ターボ冷凍機の開発の経緯、開発試作機 の技術内容,並びに、開発者であり高砂熱学工業株 式会社(以下,高砂熱学)の初代社長であった柳町 政之助(以下,柳町)の著書および講演内容から, 空気調和設備分野における偉業について紹介する.

図2 我が国の空気調和の父 柳町政之助

柳町(図2)は1892年(明治25年)に生まれ, 1913年(大正2年)に当時の東京高等工業学校(現 在の東京工業大学)機械科を卒業,卒業後は機械類 を扱う大手商社を経て,大正9年(1920年)から 高砂工業(当時)に勤務した[2].

2. 機械式製氷・冷凍の歴史

1748 年にスコットランドの医師であり化学者で あったカレン (William Cullen) は、グラスゴー大学 でエチルエーテルを容器に入れて減圧し、低温沸騰 させることで周囲から気化熱を奪う過程で冷却が 起こり、少量の氷ができることを公開実験で実証し た[4]. これが機械式製氷の始まりとされている.

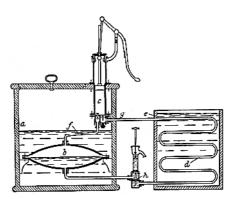


図3 Jacob Perkins の動力駆動冷凍機

1834 年に米国の Jacob Perkins は,図3 に示すエ ーテル等を冷媒とした動力駆動の冷凍機を設計し, 特許を取得した.a は凍らせる水を入れた断熱され た容器,b は冷媒の気化器を示す.気化した冷媒蒸 気は導管 f を介して弁機構を持つポンプ c によって 吸引され,c で加圧された後gを経由して冷却管 d に圧送される.加圧操作で加熱された冷媒蒸気は水 槽 e で過冷却され,絞り機構 h で断熱的に膨張する ことにより冷媒は液化する.液化した冷媒が b 内で 再び気化する際,a から蒸発熱を奪うことにより a 内に氷が生成される.これが機械式の冷凍の始まり とされている.

その後に Perkins は英国に渡り,英国の特許を取 得,製氷機を利用した事業を興したが,当時はまだ 氷を大量に生産・流通させる社会経済基盤が整って いなかったために,商業的には成功しなかった[5].

実用的な製氷機は,1859 年に仏国のカッレ (Ferdinand Carré)が開発したアンモニア吸収冷凍機 が最初とされている[5,6]. アンモニアを冷媒,水を

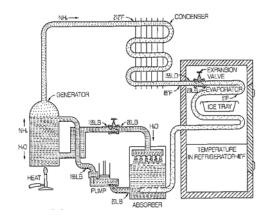


図4 F. Carré が開発したアンモニア吸収冷凍機

吸収液とした吸収冷凍機を図4に示す.

GENERATOR 内のアンモニア水は, 容器の下面 から加熱されてアンモニア蒸気になる. CONDENSER で過冷却されたアンモニア蒸気は, EXPANSION VALVE で断熱膨張して液化する. 液 化したアンモニアは冷蔵庫内の ICE TRAY の水か ら熱を奪ってアンモニア蒸気に,水は氷に相変化す る. アンモニア蒸気は, ABSORBER 内に散布され た水に吸収され, アンモニア水としてポンプで密閉 容器に返送される.

吸収冷凍機の基礎となったこの Carréのアンモニ ア吸収冷凍機は、1860年には12~100kg/hの製氷能 力を持つ連続作動する5種類の生産が開始され、製 氷業やビール醸造業で多く採用された.

1876 年にドイツのリンデ (Karl Paul Gottfried von Linde) は, 圧縮式が最も優れているとして, アンモ ニアを冷媒とした 2 気筒堅型圧縮機を完成させた. 翌 1877 年には, 竪型圧縮機を改良した水平往復動 型のアンモニア圧縮機を製造し, 大きな成功を収め た[5].

同時代には, CO₂や SO₂を冷媒とする冷凍機も製造され, 19 世紀末までに食肉冷凍分野の冷凍産業を支えた.

日本では1878年に、神戸と横浜の外人居留地内の製氷工場にはじめて水平往復動型アンモニア圧 縮機が導入され、1882年には東京築地と大阪河口の製氷工場に設備された.

製氷・冷凍業が発展したのは大正期に入ってから であるが、当時の冷凍機は、米国のヨーク社、ビル ター社、フリック社等の輸入機械であった.

1910年台には国産のアンモニア冷凍機が製造されたが、輸入品より性能・耐久性・外観等で見劣りするものであったようである.特に、アンモニア圧縮機の軸封が不完全で、時々アンモニアの漏洩による悪臭に悩まされていた.また、水平往復動型圧縮機では、回転数と往復動の容積で単位時間当たりの吐出量が決まるが、回転数を上げるには限界があるため、大容量の冷凍能力を実現するためには大型にならざるを得なかった.

1925 年に森永製菓鶴見工場に設置されたアンモニア冷凍機の水平往復動型圧縮機を図5に示す.

アンモニア冷凍機の水平往復動型圧縮機は、モリ エル線図からシリンダの直径、ピストンの全振幅長 と回転数(アンモニアの循環量)が算定され、その

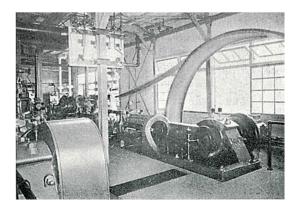


図 5 森永製菓鶴見工場に設置された水平往復動 型アンモニア冷凍機

上で凝縮器と蒸発器の伝熱面積等が設計された.その結果,電動機が150kW,シリンダの直径が350mm, ピストンの全振幅長700mm, 平ベルト掛けフライ ホイールの直径が4,200mmという途轍もなく大き な設備となった[1]. これについて,当時技師長であ った柳町は特に水平往復動型アンモニア冷凍機の 容積・重量が大きいことおよび圧縮機の往復動で生 ずる建物共振点に近い振動の発生により,「事務所 建築の冷房用途には不適合である」と感じていた. これが次に述べる回転式のターボ冷凍機の開発の きっかけとなった.

一方,大正期にかけてアンモニアに代わる冷媒と して CO₂ を用いた冷凍機が試作されたが,圧縮圧 力が非常に高いため,当時の冷凍機用圧縮機類の技 術では発展させることが出来なかった.最近は,高 圧の冷凍機用圧縮技術の進展と地球温暖化防止の 観点から,CO₂は自然冷媒として復活しているのは 周知の通りである.

3. 国産の遠心式冷凍機の開発

以下では、1955年に冷凍誌第30巻第332号(タ ーボ冷凍機特集号)に記載された柳町の回想記事 [7]から、高砂荏原式ターボ冷凍機の開発の経緯を 紹介する.その上で、株式会社荏原製作所の山岸社 長と大岩順二氏の「ターボ冷凍機に就いて」[8]から、 高砂荏原式ターボ冷凍機の開発機に関する技術内 容について述べる.

3.1 高砂荏原式ターボ冷凍機の開発

1915 年頃から柳町は、米国の空気調和の父と呼ばれたキャリア (Willis. H. Carrier)博士(以下キ

ャリア)の報文類を収集し,温度・湿度の調整に係 る新技術に感心を持ち,絶えず研究をしていた. 1923年に Heating & Ventilation 誌に掲載されたキャ リア考案による Centrifugal Refrigerating Machineの 記事を読んで,「事務所建物のための冷凍機は遠心 式だ」と直感し,キャリアの遠心式冷凍機を輸入し ようと計画した.しかし,冷凍機本体の見積価格も さることながら,派遣技術者達の出張費が予想以上 に高く,実現できなかった[1,2].

そこで遠心式冷凍機の国産化を目指すことになった.冷媒はドイツからジクロロエチレン(C₂H₂Cℓ₂) を輸入する目途が付いた.他方,回転機についても パートナを見つける必要があり,1929年頃に新興 のポンプメーカであった株式会社荏原製作所が米 国のブロア社の多翼送風機に対抗したターボ形送 風機の国内生産に着手していたことに着目して,タ ーボ形送風機の設計担当者であった同社の大岩順 二氏を開発担当者として国産 6 段のターボ型圧縮 機の共同開発に取り組んだ[1,2].

1929 年,柳町はこの国産 6 段のターボ型圧縮機の開発を目的として先進の技術を視察すべく渡米した. ロサンゼルスの Biltmore Hotel に宿泊した際にもホテルの冷房設備に関心を持ち,ホテルの技師長の好意で,蒸気駆動のターボ冷凍機(125JRT)の運転状況を視察することができた[2].

帰国後,即座に荏原製作所と打合せを行い, 75JRT の電動ターボ冷凍機の試作に取り掛かった. 電動機 75kW で駆動された 75JRT の電動ターボ冷 凍機の試作機(COP=3.86)は,翌年 1931 年に完成 し,大岩氏により「高砂荏原式ターボ冷凍機」と命

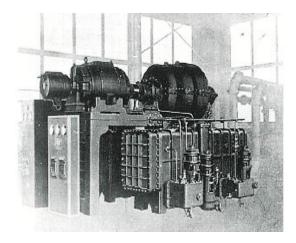


図 6 国産第一号となる 150JRT の高砂荏原式ターボ冷凍機(ブライン冷却用途)

名された.図6に150JRTの国産第一号となる高砂 荏原式ターボ冷凍機を示す[10].

試作機の開発期間中の出来事として同記事[10] には、次のような記述がある.

試作を進める一方で,キャリアが設立したキャリ ア・エンジニアリング社(以降,キャリア社と略す) から,我が国を対象としてターボ冷凍機の主要部分 における広範囲に亘る内容の特許公告が出されて いることを知った.キャリア社の我が国に対する特 許出願日は,柳町が帰国した日の1週間後であった. 柳町は,帰国後早々に荏原製作所や共同開発関係者 にターボ冷凍機に関する説明を既に行っていたこ とから,公告に示された広範囲の部分は我が国では 既に公知の事実であるとして,キャリア社の特許に 対して即座に異議を申立てた.その結果,日本の特 許局は柳町の異議を認め,キャリア社から出された 我が国に対する特許は不成立となったことで,高砂 荏原式ターボ冷凍機に関する我が国の特許が成立 した.

なおこの特許係争に関しては, 筆者は直接に柳町 から, キャリア社からの国際的な告訴やこれに関す る検察からの取り調べも受けつつ自分が国産のタ ーボ冷凍機を成立させるために最も力を尽くした 案件である, と伺ったことを印象深く記憶している. 柳町が一人で戦い, 国内の特許を成立させたこの経 緯については, 自らが[7]に語っている.

このような多方面に亘る努力の結果,1931年に は大阪中之島にある朝日ビルディング(延床面積 14,917m²)から180JRT/台×2台を受注し,全館冷房, 温湿度制御,並びに,遠隔全自動制御の機能を持つ 空気調和設備を完成させた[11].このビルディング は,夏季は冷凍機を並列運転して冷房のための冷水 を供給し、冬期は遊休する冷凍機を直列運転して、 屋上に約 370m²のスケートリンクのための冷凍設 備にするなど、当時の空気調和設備としては最新の 技術を集結した斬新な施設として評価された.渡米 した際に視察した設備の中で、我が国において実現 すべき空気調和関連設備は積極的に実証研究した 後に、顧客の納得を得て設計・施工する、技術者と しての好奇心の維持と確かな技術力・実行力には、 只々敬服するばかりである.図7に朝日ビルディン グの全景を示す.

3.2 開発機の技術内容

高砂荏原式ターボ冷凍機は,国産6段の電動圧縮 機を採用した冷凍機で,今日の冷凍機の原型となる 蒸発器,ターボ型圧縮機,凝縮器の3要素で構成さ れた冷凍サイクルからなる.当該ターボ冷凍機の構 造説明図を図8に示す[10].

蒸発器には多管のシェル&チューブ熱交換器を 採用し、冷媒は蒸発器の片側に設けられた冷媒循環 ポンプで吸い上げられてシェル&チューブ熱交換 器の外側から噴霧される.蒸発器はエリミネータを 介してターボ型圧縮機の吸入口に接続されている ため、蒸発器内の液冷媒は低温でも蒸発する圧力ま で減圧され、シェル&チューブ熱交換器に供給した 水は冷却される.蒸発した冷媒蒸気は、エリミネー タを通過する際に同伴する液冷媒が振り落とされ、 乾き冷媒蒸気としてターボ型圧縮機に吸い込まれ る.ターボ型圧縮機は、凝縮できるようになった冷 媒蒸気を凝縮器に送り込む.

凝縮器は、蒸発器と同じシェル&チューブ熱交換

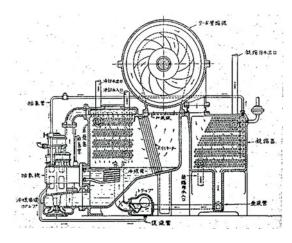


図8 高砂荏原式ターボ冷凍機の構造図

図7 朝日ビルディングの全景

器で構成されている.冷媒蒸気は,常温で凝縮できる圧力まで昇圧され,冷却水に凝縮熱を放熱しながら液冷媒として蒸発器に戻る.この液冷媒管には膨 張弁はなく,フロート式トラップにより自動的かつ 円滑に冷媒が蒸発器に戻る構造になっている.

高砂荏原式ターボ冷凍機では,全操作が真空装置 内で行われるように真空ポンプが設備され,凝縮器 の上部から脱気する構造になっている.冷媒の選択 には,冷凍機に使用される金属に対する腐食性が極 めて小さく,かつ不燃性であること,蒸発温度 5°F (-15°C)と凝縮温度 86°F (30°C)における絶対圧力 差が小さい冷媒を選定することで,圧縮機の段数, つまり圧縮機の動力を小さくすることが選定要件 であった.この要件を満たす冷媒として,試作段階 の冷媒 $C_2H_2C\ell_2$ から,実用機の製作段階では $CH_2C\ell_2$ に変更されている[8,9].

冷媒の熱力学的性質について柳町は、冷媒の温度 vs. エントロピー (T-S 線図) に関する考察として、 「効率を論ずるためには理想的な熱機関であるカル ノーサイクルを評価基準として、加熱損失を少なく するために、モリエル線図において液相線がより垂 直に立っていること、液相線と気相線の交点である 冷媒の限界温度が 400°F (204℃) 以上であることを 選定要件として検討した」と述べている.

表	1	理想的熱効率に近付けるための冷媒選定					
		冷媒	臨界圧力 MPa	臨界温度 ℃	消炎性		

11.3

5.51

10.3

133

243

193

×

Δ

Ο

·~ +#	分子量	蒸気密度	絶対圧力差
冷媒	g/mol	kg/m ³	KPa
NH ₃	17.0	0.708	930
$C_2H_2C\ell_2$	96.9	4.04	85.5
CH ₂ Cl ₂	84.9	3.54	126

更にターボ冷凍機の冷媒とした C₂H₂Cℓ₂は、カル ノーサイクルを評価基準として比較したときに、 「熱効率が高いこと、ターボ冷凍機の冷媒として気 体の比重(分子量)が大きいことから圧縮段数が少 なくて済む」ことに言及している[7].

高砂荏原式ターボ冷凍機の当時の販売拡大用カ タログを図9に示す.このカタログには、本ターボ 冷凍機について、以下の特長が示されている.

図9 高砂荏原式ターボ冷凍機のカタログ[12]

- ・ 全装置が真空容器内で作動(絶対安全)
- ・タービン式圧縮機の採用(過剰圧力の皆無)
- ・運転状態(低振動レベル,静寂)
- ・反動作用(基礎工事・据付費僅少)
- ・全自動制御を採用(取扱い簡便、人件費節約)

このカタログは 1937 年から 1938 年の間に制作 されたものと推察され,昭和初期の 1931 年から 1938 年までの納入先の記載がある.記載されてい る納入先は8年間に42件であったが,それらを用 途別の割合で示したのが,図10である.

特徴的なことは,当時盛んであった朝日新聞社本 社の社屋など大型建築物への設置に加えて,繊維工 業への導入割合が非常に大きいことである.

これは、当時世界に向けて急激に成長していた紡績産業(とくにレイヨンの製造)が、繊維への吸水量が室内の温度・湿度に大きく依存するために、空

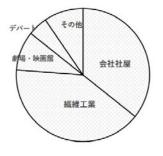


図 10 昭和初期におけるターボ冷凍機の納入先 割合

 NH_3

 $C_2H_2C\ell_2$

CH₂Cl₂

気調和技術を必要としていたことによる.これを 「産業空気調和」と呼んでいる[2].

キャリアが空気調和技術を開発したのも、印刷の 精密化によって印刷機周辺の温度・湿度を一定に管 理する「産業空気調和」のためであった.更に、キ ャリアは印刷工たちが印刷機周辺で昼食を食べる ようになったのを見て、「居住空気調和」に思い至 ったといわれている[13].また、キャリアは空気調 和設備が大きな劇場にも有効であることにも気付 いていた.当時、夏の劇場・映画館は非常に暑くて 不快な場所であったが、キャリアは 1925 年にマン ハッタンのパラマウント社の大きな映画館に空気 調和設備を導入して、成功している[13].

柳町のターボ冷凍機も,最初の稼働は東京築地の 東京劇場(1931年)であったことも[2],軌を一に していて非常に興味深い.確かに,まだ家庭用エア コンが普及していなかった当時,夏に映画館や百貨 店に行く楽しみの一つは,「涼」を求めることにも あったことが思い出される.

4. ヒートポンプの開発

熱力学の体系化に貢献したロード W.T.ケルビン (本名は William Thomson)は、熱機関(カルノーサ イクル)とヒートポンプ(逆カルノーサイクル)が 表裏一体であることを理解していた.1852 年に発 表した「空気の流れを用いて建物の暖房・冷房を行 う経済性について」の中で、ヒートポンプの詳しい 作動原理とその原理的な効率を説明している[14].

この原理に基づき,1926年に京都帝国大学の大塚 要教授は,「工業の大日本」誌6月号の論文[15]の中 で「燃料節約の一策として冷凍機を暖房機として流 用する議」という表題で,この原理の正当性を体系 的に論じている.

柳町はヒートポンプに大いに興味を抱き,1929 年の渡米の際にキャリア(図 11)との面談におい て,遠心冷凍機を暖房に用いることの実現可能性に ついて質問している.

キャリアの「有望である」とのコメントを得て, 1930年には高砂荏原ターボ冷凍機の試作時に,ヒ ートポンプとしての機能・性能に関する試験を実施 して実用化への確信を深めた[7,8].

ターボ冷凍機に関する講演会において会場との 質疑応答の中で柳町は、「ターボ冷凍機をヒートポ ンプ機(暖房機)としての使用は可能か」と問われ

図 11 1915 年 (キャリア社を興こした年)の キャリア (柳町が面会したのは,この14 年後にあたる. ©Carrier Corporation)

た際に、「この機械なら従来からロード・ケルビン が提唱していた冷凍機を暖房機に使う原理を実現 できると考える」と回答している.また、「ヒート ポンプは、冷房・暖房の両方を必要とする日本の気 候に適合している」、「我が国には豊富な地下水資源 があり、地下水の熱利用によりヒートポンプの熱効 率は更に高くなるから、消費電力量は少なくなると 確信している」、「一日も早くヒートポンプを実現し たい」とも述べている.これら技術に対する興味と 先駆的な研究開発能力、並びに、実行力には改めて 驚かされる.

1934年11月期の高砂暖房工事の営業報告書のな かで、「受注先が拡がっているのは(中略)特ニ<u>空</u> 気調和装置ノ必要ナルコトカ広ク認識セラルルニ 至タル結果ナリ(後略:下線は筆者)」との記述が あり、ここで初めて、我が国で「空気調和」の用語 が使用されたと考えられている.

4.1 ヒートポンプ方式による暖房設備

我が国で最初のヒートポンプ方式による暖房設備は,兵庫県御影町にあった村山長拳氏の私邸(木造和風住宅2階建230m²)に,1932年に設置された.

当初は別設備によって冬期の電気暖房と 2 階寝 室(60m²)の冷房を行う設計であったが,冷凍機を 用いた冷暖房一体機能を提言した結果,同氏のご了 解を得たことで我が国最初のヒートポンプ式暖房 が実現した[1,2].図12に村山長拳邸に設備された 我が国で初めてのヒートポンプ式暖房の系統図を 示す.

なお,この神戸市御影には,国の重要文化財に指

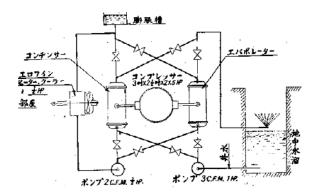


図 12 我が国初のヒートポンプ式暖房の系統図

定され香雪美術館として現在も保存されている朝 日新聞社初代社主の村山龍平邸があるが、ヒートポ ンプの設置された村山長拳氏邸は、同一の敷地内に あったものの村山家2代目当主の私邸であり、当時 の建物は改築のために 1965 年頃に解体され現存は していない[16].

4.2 ヒートポンプ方式による冷暖房設備

1937年には、京都電燈の本社(現関西電力京都支店)の地下1階/地上8階,延べ床面積10,619m²に、 高砂荏原式ターボ冷凍機130HP/台(夏期100JRT、 冬期80JRT)×2台により、ボイラや電熱ヒータを一 切使用せず、世界最初で最大規模の地下水を熱源と したヒートポンプ式全館冷暖房空気調和設備が施 工された[1, 2, 14].

図 13 には京都電燈(現関西電力京都支社)の社 屋の外観を,図 14 には地下の機械室に設備された 井水を熱源とするヒートポンプを示す.

筆者は,当該社屋において冬季の外気からヒート

図 13 京都電燈の本社社屋の全景 (現関西電力株式会社京都支店社屋)

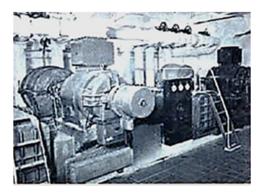
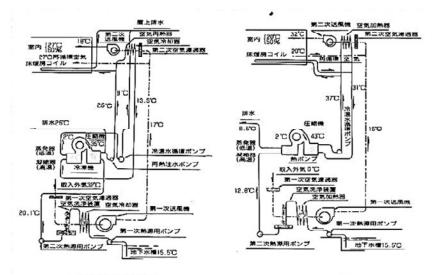


図 14 京都電燈本社社屋の機械室の井水熱源 ヒートポンプ設備

ポンプの熱源を得るヒーティングタワー(夏季は冷 却塔として同機を使用する)の原型を視察した際に, 当時,保温・防音材であった炭化コルク(黒色)が 機械室内壁全面に施工されていたことを目の当た りにして,美術品を見たような感動を記憶している.


図 15 は京都電燈の本社社屋に納入されたヒート ポンプ式冷暖房設備の説明図である[18]. この社屋 は全館冷暖房完備であったために,第二次大戦後す ぐに GHQ に一部接収された時期がある. 高度で精 緻な全自動で運転制御される冷暖房システムに驚 いた米軍の技術者は,本国の空気調和に関する専門 誌(現 ASHRAE:米国暖房冷凍空調学会)に報告記 事を投稿したほどであった.

その後 1962 年に施行された「建物用地下水の採 取の規制に関する法律」により,施設の一部が使用 不可能になったが,1970 年頃からの我が国の高度 経済発展に伴い,直接的に燃料の燃焼に依らない空 気熱源ヒートポンプは,再度注目されるようになり, 今日の全盛に至っている.

5. おわりに

筆者は、入社年の4月から12月中旬までの毎週 木曜日に目黒区にあった柳町(以下、先生と記す) の事務所に伺い、空気調和設備の初歩から技術者と しての心構えまで、ご自身の体験や設備設計・施工 に係るエピソードをご教示頂く機会を得た.先生か らご教示頂いた数々の話のなかから、今でも記憶に 残る事柄を以下に紹介させて頂く.

最新の技術の本質を見抜く先生の卓越した洞察 カの源は,世界中から有意な技術等をいち早く見出 して我が国に紹介し,輸入を手掛けていた大手機械

a. 冷房装置として使用の場合

b. 爆房装置として使用の場合

図 15 京都電燈本社社屋に設備されたヒートポンプ式冷暖房システムの説明図

商社のご出身であることが関係しているものと推 察している.

その上で,「7度自宅を改築しました」とさりげ なく話されたことがあり,後にご自宅に招待された ときに,輻射暖房,ヒートポンプ暖房,蓄熱空調, 並びに,太陽熱ヒートポンプをご自身が設計し,自 宅において実証された設備等を見学させて頂き,先 生から性能等の説明を受けたことも,非常に印象深 かった.

また経営者であり技術者として最新の技術の機 能・性能・効果を自ら検証され,得られた結果に基 づいて実際の設計・施工にその知識・知恵を活用さ れている.更に,竣工現場では背広姿で機械室や時 には天井裏に入り,振動・騒音を床等に耳を付けて 検証したと話された時の満足そうな姿が思い出さ れる.

このように現場主義を生涯貫かれた先生は,70 歳を超えた年齢で現NHK 放送会館の設計責任者に 任じられ,「施主からは大いに心配された」と目を 細めて懐古されていた姿が今も記憶に新しい.

本報は,機械遺産申請の際に調査・収集した高砂 荏原式ターボ冷凍機の開発当初の技術資料に基 づき,その開発経緯や開発試作機の技術内容,さら には,第56回日本伝熱シンポジウム(徳島)のオ ーガナイズドセッションにおいて講演した内容 [17]から,これを活用した我が国最初のヒートポン プ空調の開発を紹介したものである. このように,先生の高い識見と空気調和技術に係 る数々の輝かしい功績から,「我が国の空気調和の 父」と呼ぶにふさわしいと考えている.

この小文が,若い技術者への空気調和設備技術の 伝承の一助になれば幸いである.

謝 辞

本報で使用した写真や図は,主として高砂熱学工 業株式会社の提供に依ります.また,高砂荏原ター ボ冷凍機の開発当初の文献・写真,並びに当時のカ タログ等の貴重な技術資料を荏原冷熱システム株 式会社からもご提供頂きました.

また,我が国初のヒートポンプが設置された村山 長拳邸の現状調査と本稿の準備では,香雪美術館の 落合治子氏のご協力を頂きました.ここに記して感 謝の意を表します.

文 献

- 高砂熱学工業 70 年の歩み,高砂熱学工業株式 会社,(1994).
- [2] 高砂熱学工業 50 年の歩み,高砂熱学工業株式 会社,(1973).
- [3] 一般社団法人日本機械学会 HP「機械遺産」 https://www.jsme.or.jp/kikaiisan
- [4] https://en.wikipedia.org/wiki/William_Cullen, 日本語:https://ja.wikipedia.org/(以下略).
- [5] Handbuch der Kältetechnik, (1954) 83-85, Springer.

- [6] 冷凍, 日本空調冷凍学会, 50 (578), (1975) 982.
- [7] 柳町政之助, 我国に於けるターボ冷凍機の誕生 を懐古して, 冷凍「ターボ冷凍機特集号」, 30 (332), (1955) 218-222.
- [8] 山岸靖一,大岩順二,衛生工業協會誌(現空気調和・衛生工学会誌)「ターボ冷凍機に就いて」
 5(6), (1931) 397-430.
- [9] 大岩順二, 冷凍「ターボ冷凍機始期の思い出」, 30 (332), (1955) 223-224.
- [10] 暖房一冷房一換気, 温湿度調整装置, 高砂暖房 工事株式会社, (1937) 1-9.
- [11] 空気調和・衛生設備技術史;空気調和・衛生 工学会編,丸善,(1991)48.
- [12] カタログ「画期的理想の新冷凍機 高砂荏原式 ターボ冷凍装置」,高砂暖房工事株式会社, (1937~1938).
- [13] Steven Johnson, "How we got to now, Six innovations that made the modern world", (2014), Nutopia,. (訳)「世界をつくった6つの革命の物 語」,大田直子, (2016),朝日新聞出版.

- [14] 日本冷凍史,日本冷凍空調学会,(1998)376.
- [15] 大塚 要, 工業之大日本, 23 (6), (1926) 4-9.
- [16] 香雪美術館, 調査依頼に対する回答, (2019).
- [17] 高橋 惇, 第 56 回日本伝熱シンポジウム講演 要旨集, nhts56-I23, (2019).
- [18] 柳町政之助,衛生工業協會誌(現空気調和・ 衛生工学会誌),12(6),(1938)477.

冷凍トンに関する単位の注釈

日本冷凍トンは、1メートルトン (1,000kg)の 0℃ の水を24時間で0℃の氷にするための熱量である. 水の凝固の比エンタルピーは 79.68kcal/kg (334kJ/kg)であるから、1 JRT=9.68kcal/kg×1,000kg ÷24h=3,320kcal/h (3.86kW) と定義されている.

米国冷凍トンは,2,000lb (907.2kg)の 0℃の水を24 時間で 0℃の氷にするための熱量である.水の凝固 の比エンタルピーは 144BTU/lb であるから, 144BTU/lb × 2,000lb ÷ 24h = 12,000BTU/h = 3,024kcal/h であり,単位換算すると1 USRT = 3,024kcal/h (3.52kW).